The Local Structure of a Bipartite Distance-regular Graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The local eigenvalues of a bipartite distance-regular graph

We consider a bipartite distance-regular graph Γ with vertex set X, diameter D ≥ 4, and valency k ≥ 3. For 0 ≤ i ≤ D, let Γ i (x) denote the set of vertices in X that are distance i from vertex x. We assume there exist scalars r, s, t ∈, not all zero, such that r|Γ 1 (x) ∩ Γ 1 (y) ∩ Γ 2 (z)| + s|Γ 2 (x) ∩ Γ 2 (y) ∩ Γ 1 (z)| + t = 0 let Γ 2 2 denote the graph with vertex set˜X = {y ∈ X | ∂(x, y)...

متن کامل

A distance-regular graph with bipartite geodetically closed subgraphs

Let Γ be a distance-regular graph of diameter d , and t be an integer with 2 ≤ t ≤ d − 1 such that at−1 = 0. For any pair (u, v) of vertices, let Π (u, v) be the subgraph induced by the vertices lying on shortest paths between u and v. We prove that if Π (u, v) is a bipartite geodetically closed subgraph for some pair (u, v) of vertices at distance t , then Π (x, y) is a bipartite geodetically ...

متن کامل

A characterization of bipartite distance-regular graphs

Article history: Received 9 April 2013 Accepted 15 December 2013 Available online 13 January 2014 Submitted by R. Brualdi

متن کامل

The subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two

We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where A = A1 and E ∗ i denotes the projection onto the i th subconstituent of Γ wi...

متن کامل

Subgraphs Graph in a Distance-regular Graph

Let Γ denote a D-bounded distance-regular graph, where D ≥ 3 is the diameter of Γ. For 0 ≤ s ≤ D − 3 and a weak-geodetically closed subgraph ∆ of Γ with diameter s, define a graph G(∆) whose vertex set is the collection of all weak-geodetically closed subgraphs of diameter s+2 containing ∆, and vertex Ω is adjacent to vertex Ω′ in G if and only if Ω∩Ω′ as a subgraph of Γ has diameter s+1. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1999

ISSN: 0195-6698

DOI: 10.1006/eujc.1999.0307